

Maxpar Phosphoprotein Staining with Fresh Fix

WARNING Before handling any chemicals, refer to the safety data sheet (SDS) provided by the manufacturer and observe all relevant precautions.

Reagents and Materials

Required Materials

Product Name	Catalog Number	Storage
Cell Staining Reagents		
Cell-ID™ Cisplatin—100 µL	201064	–20 °C in single-use aliquots
Cell-ID Intercalator-Ir—125 µM, 25 µL	201192A	–20 °C in single-use aliquots
Maxpar [®] Cell Staining Buffer—500 mL	201068	4 °C. Do not freeze.
Maxpar Fix and Perm Buffer	201067	4 °C. Do not freeze.
Maxpar metal-conjugated antibodies	Various	4 °C. Do not freeze.
Maxpar Fix I Buffer (5X)	201065	4 °C. Do not freeze.
Maxpar PBS—500 mL	201058	4 °C. Do not freeze.
Maxpar Cell Acquisition Solution—200 mL 6-pack (6*200 mL)*	201240 201241	4 °C. Do not freeze. 4 °C. Do not freeze.
Maxpar Water	201069	4 °C. Do not freeze.
EQ [™] Four Element Calibration Beads—100 mL	201078	4 °C. Do not freeze.
Tuning Solution—250 mL	201072	Room temperature

*For Helios with WB injector only

Other Required Materials and Equipment

- Pierce[™] 16% Formaldehyde (w/v), Methanol-free [Cat. No. 28906 (10 x 1 mL)/Cat. No. 28908 (10 x 10 mL), Thermo Scientific[™]]
- Polypropylene round-bottom tubes, 5 mL capacity, 12 x 75 mm
- Polypropylene round-bottom tubes with cell-strainer cap, 5 mL capacity, 12 x 75 mm
- Centrifuge capable of holding 5 mL tubes
- Vacuum aspirator
- Vortex
- [Optional] Fc Receptor blocking reagent
- Serum-Free and Complete Media
- Methanol (Cat. No. BP1105-4, Fisher Scientific™)
- 1.5 mL microfuge tubes
- Pipet tips with aerosol barrier

Important Notes Before Starting

This protocol should be followed for staining activation-induced phosphorylated antigens. For staining secreted proteins, including cytokines, and other intracellular antigens, please use the Maxpar Cytoplasmic/Secreted Antigen Staining with Fresh Fix (PN 400279).

Reagent handling: Retrieve, mix, and centrifuge reagents as directed. Frozen aliquots of Cell-ID Intercalator-Ir and Cell-ID Cisplatin should be used only once, and only immediately after thawing. Avoid multiple freeze/thaw cycles.

Formaldehyde solution: It is critical to prepare fresh formaldehyde (FA) solution to effectively fix cells stained with the Maxpar antibodies. Be sure to open the single-use formaldehyde ampule and prepare the FA solution immediately before use in the fixation process.

Centrifuge speeds: For cell centrifugation steps, centrifugation should be performed for 5 minutes at $300 \times g$ before cell fixation, and for 5 minutes at $800 \times g$ after cell fixation. The increased centrifugation speed after cell fixation will result in greater cell recovery.

Antibodies: Fluidigm antibodies are pre-titrated, and we recommend staining with 1 μ L of each antibody for 1–3 million cells in a 100 μ L staining volume. Cell surface and phosphoprotein antibodies are diluted in Maxpar Cell Staining Buffer. However, antibodies should be titrated for individual experiments.

Cell viability staining: Prior to Step 1 of the protocol, cells can be stained with Cell-ID Cisplatin to identify viable cells.

FcR blocking: An optional Fc receptor-blocking step is recommended in the following protocol to prevent binding of Maxpar metal-conjugated antibodies to Fc receptors. Binding

results in high non-specific background signal. Fc receptors specific for IgG, including FcγR1 (CD64), FcγRII (CD32), and FcγRIII (CD16), are present on many cell types, with particularly high expression on monocytes, granulocytes, and B cells.

Reagents and Solutions to Prepare in Advance

Antibody Cocktail

Prepare cocktails of Maxpar metal-conjugated antibodies, for both cell surface staining and phosphoproteins, in Cell Staining Buffer. It is recommended to prepare antibody cocktails in a total volume of 50 μ L so that when it is added to 50 μ L of cells the total staining volume is 100 μ L. The antibody cocktail can be stored for up to 24 hours before staining.

Intercalation Solution

Prepare 1 mL of cell intercalation solution for each sample by adding Cell-ID Intercalator-Ir into Maxpar Fix and Perm Buffer to a final concentration of 125 nM (a 1,000X dilution of the 125 μ M stock solution) and mix by vortexing. For example, for 10 samples, prepare intercalation solution by adding 10 μ L of 125 μ M Intercalator-Ir to 10 mL of Maxpar Fix and Perm Buffer.

(Optional) Serum-Free and Complete Media

If performing the optional cisplatin viability stain, warm serum-free and complete media at 37 °C prior to beginning protocol. Use the same media that is normally used for cell culture.

Protocol

Prepare Cells

- 1 Prepare cells of interest from cell culture or primary tissue and activate desired signaling pathways by adding stimulus to cells for appropriate length of time.
- **2** At the end of stimulation, stop the signaling reaction by adding 5X Fix I Buffer to a final concentration of 1X.
- 3 Mix gently and thoroughly, and incubate for 10 minutes at room temperature.
- **4** Transfer cells to an appropriate tube and wash with Maxpar Cell Staining Buffer, using 5–10X the volume of the cell suspension. Centrifuge for 5 minutes at 800 *x g* and discard supernatant by aspiration.
- **5** Resuspend cells in Maxpar Cell Staining Buffer and aliquot 1–3 million cells, in a volume of 50 μL, into 5 mL tubes for each sample to be stained.

NOTE Adjust the volume in which cells are re-suspended to account for volume of Fc Receptor Blocking solution if used.

Stain with Surface Antibodies

- (Optional) Fc blocking: Add Fc receptor-blocking solution to each tube and incubate for 10 minutes at room temperature. Without washing off Fc receptor-blocking solution, continue with protocol.
- 2 Add 50 μ L of the surface antibody cocktail to each tube so the total staining volume is 100 μ L (50 μ L cell suspension + 50 μ L antibody cocktail). (See Antibody Cocktail Table for mixing volumes).
- **3** Gently pipet to mix each tube and incubate the tubes at room temperature for 15 minutes.
- 4 Gently vortex samples and incubate for an <u>additional</u> 15 minutes at room temperature.
- **5** Following the incubation, wash by adding 2 mL Maxpar Cell Staining Buffer to each tube, centrifuge, and remove supernatant by aspiration.

Stain Cells with Phosphoprotein Antibodies

- 1 Gently vortex to resuspend cells in residual volume. Place cells on ice for 10 minutes to chill sample.
- 2 Add 1 mL of 4° C methanol to each sample, mix gently, and incubate for 15 minutes on ice.
- **3** Wash cells with 2 mL Maxpar Cell Staining Buffer, centrifuge, and discard supernatant by aspiration.
- 4 Repeat step 3 for a total of two washes.
- 5 Resuspend pellet in residual volume with gentle vortexing.
- 6 Add phosphoprotein antibody cocktail to each tube so the total staining volume is 100 μL.
- 7 Gently pipet to mix each tube and incubate the tubes at room temperature for 30 minutes.
- **8** Following the incubation, wash by adding 2 mL Maxpar Cell Staining Buffer to each tube, centrifuge at 800 x g for 5 mintues and remove supernatant by aspiration.
- **9** Repeat Step 8 for a total of 2 washes, and resuspend cells in residual volume by gently vortexing after final wash/aspiration.

Fix Cells (Fresh Fix)

IMPORTANT It is essential to thoroughly disrupt the pellet by vortexing before adding the fresh fixative at this step.

1 Prepare a fresh 1.6% FA solution from the 16% formaldehyde stock ampule. Dilute 1 part of the stock formaldehyde with 9 parts Maxpar PBS.

NOTE For example, to prepare the 1.6% FA solution for one sample, add 100 μ L of 16% stock formaldehyde to 900 μ L of Maxpar PBS. Include 10% volume overage for multiple samples.

- 2 Add 1 mL of the 1.6% FA solution to each tube (containing 1–3 million cells in suspension) and gently vortex to mix well.
- 3 Incubate tubes for 10 minutes at room temperature.
- 4 Centrifuge cells at 800 x g for 5 minutes.
- 5 Increased centrifuge speed after cell fixation results in greater cell recovery.
- 6 Carefully aspirate and remove supernatant. Gently vortex to resuspend cells in residual volume.

Stain Cells with Cell-ID Intercalator-Ir

1 Prepare 1 mL of intercalation solution for each sample by adding Cell-ID Intercalator-Ir into Maxpar Fix and Perm Buffer to a final concentration of 125 nM (a 1,000X dilution of the 125 μM stock solution) and vortex to mix.

NOTE For example, to prepare intercalation solution for one sample, add $1 \mu L$ of $125 \mu M$ Intercalator-Ir to 1 mL of Maxpar Fix and Perm Buffer. Include 10% in excess volume for multiple samples.

2 Add 1 mL of the cell intercalation solution to each tube and gently vortex. Incubate for 1 hour at room temperature or leave overnight at 4 °C.

NOTE Cells can be left at 4 °C in the cell intercalation solution up to 48 hours before data acquisition.

Prepare Cells for Acquisition

For CyTOF, CyTOF 2 and Helios (HT Injector)

- 1 Centrifuge tubes containing cells in intercalation solution at 800 x g for 5 minutes.
- **2** Wash cells by adding 2 mL of Maxpar Cell Staining Buffer, centrifuge at 800 x g for 5 minutes, and remove supernatant by aspiration.
- 3 Resuspend cells in 1 mL of Maxpar Water. Reserve a small volume (approximately 10 μ L) from each tube to count cells.

- 4 Centrifuge tubes at 800 x g for 5 minutes. While tubes are in the centrifuge, go to Step 5.
- **5** Count cells in the reserved volume from each tube. Make sure to note the cell concentration for each tube.
- 6 Carefully remove all of the supernatant from centrifuged samples (Step 4) by aspiration.
- **7** Prepare sufficient volume of 0.1X EQ beads to re-suspend all samples in the experiment by diluting 1 part beads to 9 parts Maxpar Water.
- 8 Leave cells pelleted until ready to run. Immediately prior to data acquisition, adjust cell concentration to 5.0 x 10⁵ (CyTOF[®] and CyTOF 2) or 1.0 x 10⁶ cells/mL (Helios[™] HT Injector) or concentration appropriate for the sample type in the diluted EQ bead solution. Filter cells into cell strainer cap tubes.
- 9 Acquire data on CyTOF, CyTOF 2 or Helios[™] (HT Injector).

For Helios (WB Injector)

IMPORTANT Check with your Helios operator to confirm whether the HT or WB Injector is in use.

- 1 Centrifuge tubes containing cells in intercalation solution at $800 \times g$ for 5 minutes.
- **2** Wash cells by adding 2 mL of Maxpar Cell Staining Buffer, centrifuge at 800 x g for 5 minutes, and remove supernatant by aspiration.
- **3** Carefully aspirate and discard supernatant. Gently vortex to resuspend cells in residual volume.
- **4** Wash cells by adding 2 mL of <u>Maxpar Cell Acquisition Solution</u> to each tube and gently vortex. Centrifuge tubes at 800 x g for 5 min.
- **5** Carefully aspirate and discard supernatant. Gently vortex to resuspend cells in residual volume.
- 6 (Optional) Repeat wash by adding another 2 mL of Maxpar Cell Acquisition Solution to each tube and gently vortex. Reserve a small volume (approximately 10 μ L) from each tube to count cells.

NOTE The additional wash with Maxpar Cell Acquisition Solution helps with removing additional debris from samples.

- 7 Centrifuge tubes at $800 \times g$ for 5 minutes. While tubes are in the centrifuge, go to Step 8.
- 8 Count cells in the reserved volume from each tube. Make sure to note the cell concentration for each tube.
- 9 Carefully remove all of the supernatant from centrifuged samples (Step 7) by aspiration.

- **10** Prepare sufficient volume of 0.1X EQ beads to re-suspend all samples in the experiment by diluting 1 part beads to 9 parts Maxpar Cell Acquisition Solution.
- 11 Leave cells pelleted until ready to run on Helios[™]. Immediately prior to data acquisition, adjust cell concentration to 1.0 x 10⁶ cells/mL or concentration appropriate for the sample type in the diluted EQ bead solution. Filter cells into cell strainer cap tubes.
- 12 Acquire data on Helios[™] (WB Injector).

Appendix: Antibody Cocktail Preparation Guide

The following guide can be used to prepare the Maxpar metal-conjugated antibody cocktail in Maxpar Cell Staining Buffer. Prepare the antibody cocktail in a 1.5 mL tube by first adding Cell Staining Buffer and then adding each of the antibodies. Combine 50 μ L of the complete antibody cocktail with each sample to be stained.

(a)	(d)	(b) Number of Antibodies																																		
Number	Vol																																			
Of Semples	Of Antihody																																			
Samples	μl)						_		_		-																									
			1	2	3	4	5	6	7	8	9	10	11		13			16				20		22						28	-	30	-	-	33	-
1	1.1		53.9		-	50.6	49.5	48.4	47.3	46.2		44	42.9			39.6		37.4		35.2	34.1	33	31.9			28.6		26.4			23.1	22	20.9	19.8	18.7	17.6
2	2.2		108			101	99	96.8		-			85.8		-	-		74.8	-	-	68.2	66		61.6		-	55		50.6	-	46.2	44				35.2
3	3.3		162	158		152	149	145	142	139	135	132	129	125	122	119	-		109	106	102	99		92.4					75.9			66	62.7			52.8
	4.4		216 270	211 264	207 259	202 253	198 248	194	189	185	180	176	172 215	167	163	158	154 193	150 187	145 182	141	136 171	132	128	123	119 149	114	110	106	101	96.8		88	83.6 105			
5	5.5 6.6		323	-			-	242 290	237	231	226	220	-	209 251	204 244	198		-		176		165	160	154		143	138 165	132		121	116	110		99 119	93.5	88
ь 7	б.б 7.7		323	317	310 362	304 354	297 347	290 339	284 331	277 323	271 316	264 308	257 300	251	244	238 277	231 270	224 262	218 254	211 246	205 239	198 231	191 223	185 216	178 208	172 200	165	158 185	152	145 169	139 162	132 154	125 146	119	112 131	106 123
8	8.8		431	422		405	396	387	378	370	361	308	343	334	326	317		292	290	246	239	264	255		208	200	220	211	202	194	185	176	146	158	150	123
0 9	9.9	(III)	431	422		405	446	436	426	416	406	396	343	376	366	356	308	337	327	317	307	204	255	246	236	229	220	211	202	218	208	176	187	156	168	141
9 10	9.9	\sim	539	-		455 506	446	436	420	416	408	440	429	418	407	396	-	374	363	352	341	330	319		297	286	240	230	-	210	208	220	209	198	187	176
10	12.1	Buffer	593		569	557	495 545	532	520	508	496	440	472	410	407	436	424	411	399	387	375	363	319	339	327	315	303	204	233	242	254	242	209	218	206	194
12	13.2		647			607	594	581	568	554		528	515	502	448	430		449	436	422	409	396		370		343	330	317		200	277	264	251	238	200	211
12	13.2	aining	701	686		658	594 644	629	615	601	586	520	558	543	400 529	515	462 501	449	436	422	409	429	415	400	386	343	358	343	329	315	300	286	272	250	224	211
13	14.3	Stai	755		-	708	693	678	662	647	631	616	601	585	570	554		524	508	493	443	462	413	400	416	400	385	370	354	339	323	308	293	277	243	-
14	16.5	Cell	809	739		759	743	726	710	693	677	660	644	627	611	594	578	561	545	493 528	512	402	447	462	446	400	413	396	380	363	347	330	314	217	281	240
16	17.6		862	-	-	810	792	774	757	739	722	704	686	669	651	634		598	581	563	546	528	510	493	475	458	440	422	405	387	370	352	334	317	299	282
17	18.7	Vol.	916			860	842	823	804	785	767	748	729	711	692	673	655	636	617	598	580	561	542	524	505	486	468	449	430	411	393	374	355	337	318	299
18	19.8	3	970			911	891	871	851		812	792	772	752	733	713			653	634	614	594	574	554	535	515	495	475	455	436	416	396	376	356		317
19	20.9		-			961	941	920	899	878	857	836	815	794	773	752	732	711	690	669	648	627	606	585	564	543	523	502	481	460	439	418	397	376	355	334
20	20.5		-		1034		-	968	946	924	902	880	858	836	814	792		748	726	704	682	660	638	616	594	572	550	528	506	484	462	440	418	396	374	352
21	23.1				1086				993	970	947	924	901	878	855	832	-	785	762	739	716	693	670	647	624	601	578	554	531	508	485	462	439	416	393	370
22	24.2				1137							968	944	920	895	871	847	823	799	774	750	726	702		653	629	605	581	557	532	508	484	460	436	411	387
23	25.3		-		1189					1063		1012	-	961	936	911	886	860	835	810	784	759	734	708	683	658	633	607	582	557	531	506	481	455	430	405
24	26.4				1241											950			871	845	818	792	766		713	686	660	634	607	581	554	528	502	475	449	422
25	27.5		-		1293												963		908	880	853	825	798		743	715	688	660	633	605	578	550	523	495	468	440
25	27.5		1348	1320	1293	1265	1238	1210	1183	1155	1128	1100	1073	1045	1018	990	963	935	908	880	853	825	798	770	743	715	688	660	633	605	578	550	523	495	468	440

TO USE THE TABLE: Locate the row matching the number of samples to be processed (a) and the column for the number of antibodies used to stain the sample (b). Use the table to determine the Total Volume of Cell Staining Buffer needed (c). Add this volume of Cell Staining Buffer to your mastermix tube. Again locate the row matching the number of samples to be processed (a) and in the adjacent column determine the volume per antibody (d). Add the indicated volume of each antibody solution to the mastermix tube.

For technical support visit fluidigm.com/support.

North America +1 650 266 6100 | Toll-free (US/CAN): 866 358 4354 | support.northamerica@fluidigm.com Latin America +1 650 266 6100 | techsupportlatam@fluidigm.com Europe/Middle East/Africa/Russia +44 1223 859941 | support.europe@fluidigm.com China (excluding Hong Kong) +86 21 3255 8368 | techsupportchina@fluidigm.com Japan +81 3 3662 2150 | techsupportjapan@fluidigm.com All other Asian countries/India/Australia +1 650 266 6100 | techsupportasia@fluidigm.com

For Research Use Only. Not for use in diagnostic procedures.

Information in this publication is subject to change without notice. Safety data sheet information: fluidigm.com/sds. Patent and license information: fluidigm.com/legalnotices. Trademarks: Fluidigm, the Fluidigm logo, Cell-ID, CyTOF, EQ, Helios, and Maxpar are trademarks and/or registered trademarks of Fluidigm Corporation in the United States and/or other countries. All other trademarks are the sole property of their respective owners. © 2019 Fluidigm Corporation. All rights reserved. 10/2019