A flexible image segmentation pipeline based on pixel classification for heterogenous multiplexed tissue images

Bodenmiller Lab

Vito Zanotelli, Nicolas Damond www.bodenmillerlab.com October 2nd, 2019 User group meeting workshop

Overview | **Program of the next 2.5 hours**

Goal: Segment raw IMC files to generate cell masks

- Why image segmentation ?
- Why using a pixel classification-based approach ?
- Hands-on session: IMC image segmentation pipeline
 - Concepts
 - File format and metadata requirements
 - A practical walk through the pipeline

Introduction | Why image segmentation ?

Why and when does image segmentation make sense

for multiplexed tissue image analysis?

Biologically relevant entities:

- Organism
- Tissue
- Cell

 \rightarrow A 1 x 1 x 5 μ m pixel

does not represent any of these !

- Cell compartments
- Molecules

Introduction | Why image segmentation ?

Issue: Pixel data is noisy and pixel size arbitrary

 \rightarrow Partitioning the images into relevant regions (= segmentation) is a solution

Segmentation:

- Averages pixel over "relevant" regions
- Decreases noise
- Summarizes data in a relevant way

"Relevant" is question dependent: cells or tissue structures can be relevant, e.g.:

- Intensity levels within structure
- Intensity distribution within structure
- Distribution of these structures in the images

Major caveats

IMC resolution: $1 \times 1 \mu m$ resolution, $5 \mu m$ thickness

- Subcellular compartments can physically overlap in a pixel
- Cells can physcially overlap in a pixel
- 5 μm only captures a slice of a cell (not always representative of overall cell marker profile)
 - \Rightarrow IMC-based cell phenotyping is more noisy than e.g. Flow Mass Cytometry, even with 'optimal' segmentation

But,

- \rightarrow Still good enough for cell phenotyping
- \rightarrow Spatial context and subcellular information

Example | Her2 mRNA vs protein in breast cancer

Good correlation of median signal per image over patients

No or very weak correlation within pixels of tissue area of an image

Strong correlation between mRNA and protein between segmented cells of a core Bodenmiller Lab, 2019

Example | CK19 mRNA vs protein in breast cancer

No correlation of median signal per image over patients

No correlation within pixels of tissue area of an image

Strong correlation between mRNA and protein between segmented cells of a core

Classical cell-segmentation pipeline:

(Introduction to the Quantitative Analysis of Two-Dimensional Fluorescence Microscopy Images for Cell-Based Screening, Ljosa & Carpenter, 2009)

- 1. Find cell nuclei by using a nuclear marker \rightarrow **nuclear mask**
- 2. Expand nuclear mask within cytoplasm until the membrane using

a cytoplasmic or a membranous marker \rightarrow **cell mask**

But: only uses information of 1-2 markers, dependent on actual channel intensities

Introduction | Why using a pixel classification-based approach ?

Caveats of intensity-based approches

Cell_Cytoker_6512035Pr141Pr141Di_Pr: Cell_pS6Yb171Di_Yb171 Cell_193Irlr193Di_lr193

- Cytoplasmic/Membranous markers are strongly cell type-specific
- \rightarrow Intensity varies from cell to cell
- Even Histone / DNA intercalator (iridium) show strong
 cell type-dependent intensity
- \rightarrow Purely intensity based segmentation challenging
- Staining variability across an image / across images
- Multiple markers contain information about the nature of a pixel: nuclear/cytoplasmic/membranous
- Marker distribution, textures, gradients matter to visually identify subcellular structures

IMC segmentation pipeline | **Concepts of pixel classification**

- 1. Tell the computer if you think a pixel is nuclear or cytoplasmic/membranous
- 2. Let the computer learn what you actually mean

- Developed for low-dimensional images but works even better for high dimensional images in our hands
- Based on manual input of human export knowledge
- Automatically integrates all channels as well as gradient and texture information of these channels
- Generates a highly normalized, easy segmentable "probability map" images
- Once well trained, works nicely even with heterogeneous tumor tissue
 - \rightarrow more than 800 images classified with one classifier
 - \rightarrow the classifier can be easily transferred to new images

IMC segmentation pipeline | **Segmentation using CellProfiler**

- Segmentation of well trained probability maps using CellProfiler is robust
 → check uncertainty!
- One pipeline is applicable to the probability maps of very large datasets
- The pipeline generates single cell masks
 - \rightarrow Can be used for HistoCAT
 - \rightarrow Can be used to extract single-cell data from IMC images

IMC segmentation pipeline | Overview of the pipeline

IMC data

One zipped folder should contain one .mcd file

- .mcd file(s)

+ (optional) the associated txt files

- associated .txt files

Example in .../2019_IMCWorkshop/data/zipfiles Do not unzip!

- **Antibody panel**, csv file containing the following column:
 - "Metal tag": metal isotope, format: In113.
 - "Full": boolean (0,1): which channels to use for single cell measurements.
 - "ilastik": boolean (0,1): which channels to use for ilastik training.

Do not modify!

Example in .../2019_IMCWorkshop/ImcSegmentationPipeline/config/example_panel.csv

- Select this folder: .../2019_IMCWorkshop/ImcPluginsCP/plugins
- Click OK (4) and close CellProfiler

Hands-on session | Software requirements

Anaconda (Python 3)

- Start the Anaconda Navigator
- In Applications on, select imctools (1)
- Launch a Jupyter notebook (2)
- Chose your favorite browser if prompted
- Navigate to this file and open it:

.../2019_IMCWorkshop/ImcSegmentationPipeline/scripts/ imc_preprocessing.ipynb

- Run the two first cells (click on "Run" or hit shift + enter)

ANACONDA NAVIGATOR

Hands-on session | Extract images from .mcd files

ANACONDA NAVIGATOR

3 Navigate to this file and open it:

.../2019_IMCWorkshop/ImcSegmentationPipeline/scripts/ imc_preprocessing.ipynb

+ % 4	1 1 1 1 Exécuter 1 C H Markdown		
Entrée [1]:	from imptools.scripts import ometiff2analysis		
	from imctools.scripts import imc2tiff		
	from imctools.scripts import ome2micat		
	<pre>from imctools.scripts import probablity2uncertainty</pre>		
	from imctools.scripts import convertfolder2imcfolder		
	from imctools.scripts import exportacquisitioncsv		
Entrée [2]:	import os		
	import logging		
	import re		
	import re		

20190919_FluidigmBrca_SE_S0_p0_f/a/ac.ome_tiff Wall time: 8.93 Run all cells (shift + enter)
At this stage, an error here of the form
line 91, in <listemps 'ru100'<="" (artml="" forder="" form="" in="" keyerror:="" metallis)="" return="" th=""></listemps>
indicates that the panel.csv contains a metal channel that was not actually measured in all or one of the acquisitionsl F
panel.csv to make sure that only channels are in the panel.csv that were actually measured.
Next steps
This concludes the conversion of the IMC rawdata into usable TIFFs.
The pipelines can be found in the cp3_pipeline folder in this repository. They were tested in cellprofiler 3.1.8
The next steps are:

A) Cellprofiler: 1_prepare_ilastik

Make sure that the correct plugins folder "/ImcPluginsCP/plugins" is selected in the Collipion preferences, otherwise leave

Hands-on session | Prepare images for ilastik

Hands-on session | ilastik training

2 Select:

.../2019_IMCWorkshop/data/ilastik/pretrained_classifier.ilp

Hands-on session | Export probability maps

	Franking Colorition	C. (Users/MinslanD/Deserversets/
	Training	Image Export Options ? X
	Training	Source Image Description
	Export Settings	Shape: (50, 500, 7) Axis Order: yxc Data Type: float32
	Source: Probabilities	Cupout Tible gion
	Chases Export Image Settings	range [start, stop)
	Choose Export image settings	y 🗹 All - 🗘 - 🗘
	Actions	
	🖄 Export All 👌 Delete All	c ☑ All
	Roth December	Transformations
	Batch Processing	Renormalize [min,max] from: 0,00 1,00 to: 0 65535
	Nuclei- Preview d=23.09	
	Cytoplasm- Preview 0=25.0%	6 Shape: (500, 500, 7) Axis Order: yxc Data Type: uint16
	Background- Preview 0=25.0%	6 Output File Info Format: tiff
	Raw Data 0=100.0%	6 File: {dataset_dir}/{nickname}_{result_type}.tiff Select
	0	7
		OK Cancel
Project Settings Help		
Input Data	Raw Data Prediction Mas	sk
	Select Raw Data Files	
Feature Selection		
Training		
Prediction Export		Go to:/2019_INCWorkshop/data/tiffs
Batch Processing		
Select the input files for batch processing using the controls on the right.		11 Select all "_s2.h5" files
The results will be exported according to the same settings you chose in the interactive export page above.	- 12	
Process all files		

Hands-on session | Generate cell masks

Start Test Mode

Analyze Images

Hands-on session | Generate histoCAT folders

In Jupyter, this file should still be open:

.../2019_IMCWorkshop/ImcSegmentationPipeline/scripts/ imc_preprocessing.ipynb

Run this cell (at the very bottom of the script):

Generate histoCAT folders with masks

The folders in .../2019_IMCWorkshop/data/histocat

can directly be loaded into histoCAT

Hands-on session | Extract single cell data

8 In Images, select all the files in .../2019_IMCWorkshop/data/tiffs

