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Abstract

Measuring objects and their intensities in images is basic step in many quantitative tissue

image analysis work�ows. We present a �exible and scalable image processing pipeline tai-

lored to highly multiplexed images. This pipeline allows the single cell and image structure

segmentation of hundreds of images. It is based on supervised pixel classi�cation using Ilastik

to the distill the segmentation relevant information from the multiplexed images in a semi-

supervised, automated fashion, followed by standard image segmentation using CellPro�ler.

We provide a helper python package as well as customized CellPro�ler modules that allow for

a straight forward application of this work�ow. As the pipeline is entirely build on open source

tool it can be easily adapted to more speci�c problems and forms a solid basis for quantitative

multiplexed tissue image analysis.

1 Introduction

Image segmentation, i.e. division of images into meaningful regions, is commonly used for quan-
titative image analysis [2, 8]. Tissue level comparisons often involve segmentation of the images
in macrostructures, such as tumor and stroma, and calculating intensity levels and distributions
in such structures [8]. Cytometry type tissue analysis aim to segment the images into pixels be-
longing to the same cell, with the goal to ultimately identify cellular phenotypes and celltypes
[2]. Classically these approaches are mostly based on a single, hand selected nuclear marker that
is thresholded to identify cell centers. If available a single membrane marker is used to expand
the cell centers to full cells masks, often using watershed type algorithms. However nowadays
several approaches have become available that allow a highly multiplexed measurement of molec-
ular markers, allowing images with as many as 40 markers. In such images several markers have
potentially information about the nuclear, cytoplasmic or membrane information of a pixel. Cor-
respondingly it was already shown that a segmentation based on an optimized selection of a linear
combination of these markers outperforms any single hand selected nuclear and membrane chan-
nel for segmentation [10]. However this approach does not utilize the interdependencies as well
as texture information of markers present in such images. Supervised classi�cation of pixels into
relevant classes, such as nuclear-like and background-like, has been already proposed to be used to
integrate the information encoded in the texture of high resolution but low dimensional images into
probability maps that facilitate segmentation [5, 12, 7, 13]. We argue that this approach should
also be particularly suited to integrate the channel information and textures found in multiplexed
images. A �exible classi�cation algorithm such as implemented in the Ilastik open source software
should allows for a �exible pixel classi�cation, that can be used to identify nuclear as well as mem-
brane or cytoplasmic pixels over a wide range of cell types and phenotypes, after expert guided
supervised training. Segmenting the resulting probability maps, indicative of the class association
of the trained pixels, should allow for a robust cell identi�cation by using segmentation routines
implemented in software such as CellPro�ler (Fig. 1).

We used this idea to build a �exible and scalable image processing pipeline to segment highly
multiplexed images (Fig. 2). We developed the approach based on the multiplexed imaging
technique imaging mass cytometry [3]. IMC allows the measurement o� more than 40 markers at
a resolution of 1 um in tissue sections, by exploiting a metal labeled antibody stain with a laser
ablation coupled induced coupled plasma mass spectrometer. IMC raw data contains the pixel data
in a �ow-cytometry like pixel data �le structure. Thus we build a python based converter package
to convert the raw data formats into a standardized ome.ti� format [4]. This standardized format
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Figure 1: Ilastik is used to classify pixels according to nuclear (red), membrane/cytoplasm (yel-
low) and background (green) (d) using information from various channels (a-c). This achieves
an integration of the class information from all available channels in a semi-supervised manner.
CellPro�ler is used to segment the class probability maps (white) to get nuclear (e) and cell level
(f) segmentation masks. (g) shows an example probability map with (h) the corresponding seg-
mentation. These masks are used to extract single cell information, such as mean marker levels
and neighbourhood graphs using CellPro�ler.

is the basis for the further pipeline. IMCtools can convert ome.ti� into formats and image stacks
that can be directly used in CellPro�ler and for Ilastik pixel classi�cation. To build an optimized
pipeline, existing CellPro�ler modules were adapted and new modules written to facilitate the
handling of the highly multiplexed image data and to allow for measurement of channel intensities
as well as texture features of whole multiplexed image stacks. The resulting single cell masks
and data can then be directly used in data analysis scripts as well as visualization tools such as
HistoCAT [9].
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2 Material and Methods

In the following section we give a detailed user guide for the proposed pipeline. Example con�g-
uration �les and the mentioned CellPro�ler pipelines can be found on the following Github page:
https://github.com/BodenmillerGroup/ImcSegmentationPipeline. Speci�cally the ipython
notebook found in scripts/imc_preprocessing.ipynb contains a detailed walk-through of an
example analysis.

2.1 Pipeline overview

The developed image pipeline consists of the general steps:

� Installation of the required software

� Conversion of IMC data into a common �le format

� Preparation of the pipeline metadata

� Generation of the analysis stacks

� Preparation of the input stacks for Ilastik

� Iterative training of the Ilastik pixel classi�er

� Single cell segmentation using CellPro�ler

� Multiplexed image measurements using CellPro�ler

� Further analysis of the single cell data
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Figure 2: A schema of the proposed work�ow. A) The imctools python package is used to
convert raw data into ome.ti� and prepares analysis stacks. Various tools can be used for image
visualization. B) The Ilastik analysis stack is preprocessed using CellPro�ler C) Iterative Ilastik
pixel classi�cation is used to generate probability maps. D) The probability maps are segmented
to single cell masks using CellPro�ler. E) CellPro�ler is used to generate single cell data in a
standardized format. F) The single cell data can be analyzed using various tools.

3

https://github.com/BodenmillerGroup/ImcSegmentationPipeline


2.2 Installation of the required software

The installation procedure is detailed in the ipython notebook scripts/imc_preprocessing. The
procedure relies on using the conda package manager to generate reproducible environments.

2.3 Conversion of IMC data into a common �le format

IMC data commonly comes as a vendor controlled .mcd or .txt �le. To make the following pipeline
generally applicable to multiplexed imaging data and independent of the vendor format, the raw
�les are �rst converted into an ome.ti� format [4].

For IMC data this one multiplane ti� �le per acquisition. Each channel needs to have the
channel label attribute as well as the �uor attribute set. For IMC data the metal name followed
by the isotopic mass are used with the form: (IsotopeShortname)(Mass), e.g. Ir191 for Iridium
isotope 191.

2.4 Generation of the analysis stacks

In the next step the converted .ome.ti� �les are converted in a stack format suitable for further
analysis, e.g. using CellPro�ler. In a basic pipeline two stacks will be prepared: a 'Full' stack,
containing all the channels chosen for CellPro�ler quanti�cation as well as the 'Ilastik' stack,
containing all the channels selected for the Ilastik pixel classi�cation. It is straight forward to
modify this step to generate additional stacks, e.g. for additional tissue structure segmentations.

2.5 Preparation of input stacks for Ilastik

This step will allow a preprocessing of the images used for pixel classi�cation using CellPro�ler
(example pipeline 1_ilastik_preprocessing). Common steps include removing outlier pixels (cus-
tom module Smooth Multichannel, 'Remove single hot pixels') as well as scaling the images two
fold. In our experience scaling the images two fold facilitates the manual pixel classi�cation using
Ilastik considerable when using low resolution images such as produced by IMC. Additionally we
recommend to crop random section from the image and only use these for training. Often the
tissue structures on an image are rather similar, thus cropping of the random section will allows
to train the pixel on smaller images, reducing the computational requirements of the classi�cation.
The preprocessed images are saved in an Ilastik compatible format.

2.6 Pixel classi�cation using Ilastik

To train the Ilastik pixel classi�er, an instance of Ilastik is opened and a new pixel-classi�cation
work�ow is generated [13]. Then the image crops exported for Ilastik classi�cation should be
loaded as training data. As a next step in Ilastik, the features fore classi�cation are selected. We
recommend generally to select features generously here (all features between 1 and 10 pixels), if
the computational resources allow it, and use the Ilastik 'suggest feature' feature selection after
some initial training. In the next step the pixel classi�cation is performed. For this step 3 classes:
nuclear, cytoplasmic/membrane and background pixels are created. The classi�er can be trained
by generating a training set by manually drawing pixels for the respective classes. A training is
most e�ective, if it contains a diverse collection of pixels and not to many very similar pixels. Thus
we recommend to use a small brush size (e.g. 1 pixel) and label sparsely, as nearby pixels are often
nearly identical. The channels can be changed in the lower left corner of the classi�cation window in
the input-channel layer. As the channels can have widely di�erent intensities, the 'window leveling'
tool should be used to adjust the visualization. To maximize the training e�ciency we recommend
to �rst draw some obvious pixels, e.g. from known nuclear and membrane channels. Then the 'live
update' should be activated and the 'Uncertainty' checked. Pixels with high uncertainty provide
the highest value for new training data and thus they should be preferably manually classi�ed.
Classi�cation should be done until the uncertainty looks low (=transparent) except for the class
borders, e.g. around nuclei. Once the uncertainties for an image crop look good, other image crops
should be checked. To systematically check the uncertainty for all images we also recommend to
use the 'Prediction Export' function to export the uncertainties as easily browsable .PNG images.

Once the segmentation on the image crops look su�ciently certain, the 'Batch processing'
function of Ilastik can be used to convert the uncropped, scaled Ilastik stacks into probabilities.

4



As an additional step we recommend to use the imctools script 'probabilities2uncertainties' to
convert these probability maps into big uncertainty maps for visual inspection. If there are regions
not contained in the crops whose classi�cation should be improved, e.g. FIJI can be used to
manually crop these regions and add them to the Ilastik input data.

2.7 Single Cell Segmentation of probability maps using CellPro�ler

To segment the probability maps a CellPro�ler pipeline is used (pipeline 2_segment_ilastik). First
the probability map stack is split into nuclear, cytoplasm/membrane and background. Then using
the image-math module an image with the sum of nuclear+cytoplasmic signal is generated. The
'IdentifyPrimaryObjects' module is used to segment the nuclear masks to identify nuclei. After-
wards the 'IdentifySecondaryObjects' module is run with the nuclei and the nuclear+cytoplasma
image to identify cells. As the segmentation is done on 2x scaled probability images, as a next
step the module 'rescale objects' is used to rescale the masks to 1x resolution. This module re-
moves pixels which are ambiguous after rescaling as they are combinations of pixels from di�erent
objects at 2x resolution. If wanted 'Identify secondary objects' can be used again on the cells to
�ll the gaps generated by this approach. Finally the masks are saved to be used in the next step.
Alternatively the masks and images can also be directly exported for HistoCAT analysis.

2.8 Quanti�cation of single cell features using CellPro�ler

The quanti�cation of channels per object is done by using the CellPro�ler pipeline '3_mea-
sure_mask'. In this pipeline the mask from the previous step as well as the full analysis stack,
containing all the channels to be analysed, are loaded. Additional image stacks, such as the
probability stack, can be loaded as well. Further �ltering outlier pixels can be considered as a
preprocessing step for the analysis stack. If an experiment to assess the spillover matrix of the
antibody conjugates was performed, at this step also the compensation can be applied to the
images using the 'CorrectSpilloverApply' module. Then the custom modules 'MeasureObjectIn-
tensity Multichannel' as well as 'MeasureImageIntensity Multichannel' can be used to get object
as image level statistics. The standard module 'MeasureObjectNeighbors' can be used to identify
the neightbourhood graph of the objects. Finally all these measurements can be saved.

2.9 Further analysis of the single cell data

The downstream analysis of the generated single cell data can be highly diverse. E.g. the exported
data can be loaded in R or python scripts for statistical analysis or can be visualized in tools such
as HistoCAT [9].

3 Results

3.1 Overview

Segmenting heterogeneous tissue images is challenging, as often nuclear, cytoplasm and membrane
markers are very di�erentially expressed in di�erent tissue parts. Using highly multiplexed images
such as Imaging Mass Cytometry images combined with a broad selection of clearly localized
markers can useful for this task, given that the multivariate nature of the data can be accounted
for during the segmentation step. We propose that segmentation of probability masks based on
supervised pixel classi�cation is well suited for this task (Fig. 1). Using the excellent Ilastik
framework, the user can browse the available channels to classify a training set of pixels into
di�erent classes, such as nuclear, cytoplasmic/membranous and background pixels in the case of
single cell segmentation. This training data is then used to train a supervised, random forest based
learning algorithm is learning the pixel classes on the basis of all the channels as well as derived
variants capturing gradient as well as texture information [13]. After an iterative training process
of the classi�ers, probability maps for the trained classes can be exported. These probability maps
provide a highly integrated view of the image information contained in the interdependencies,
texture and gradients of the multiplexed image channels in respect to the classes of interest. For
single cell segmentation the nuclear probability as well as the cytoplasm/membrane probabilities
can be directly used by classical image segmentation algorithms, that usually expect a nuclear
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as well as a cytoplasmic/membranous channel for segmentation. These pixel probabilities are
strongly normalized, having values between 0 and 1, and are largely independent of actual channel
intensities. Further the random forest based training is �exible enough to learn complex marker
relationships in a robust way, even despite the large expression heterogeneity of markers present
in tissues. Due to this standardized nature of the pixel probability maps, the segmentation can be
run in a largely unsupervised manner, making the approach suitable for a high throughput setting.

3.2 Pipeline

We implemented the above idea into an e�cient, high throughput compatible pipeline suited to
analyse heterogeneous, multiplexed tissue image data (Fig. 2). The approximate processing times
per image are indicated for a 500x500 pixel image with 30 channels on a single computing core.
A detailed step by step description can be found in the Material and Methods. As a �rst step
of the pipeline the input images are converted from vendor speci�c formats into a standardized
ome.ti� image [4], making the pipeline suitable for a wide range of multiplexed imaging data
(~seconds). For IMC data we developed the imctools python packages to convert existing .txt
and .mcd IMC images formats into ome.ti�s. These ome.ti�s can either viewed in FIJI, using the
imctools package as a FIJI plugin or converted by imctools for visualization in the HistoCAT or
HistoCAT++ toolboxes. Based on con�guration �les, the images are split into a stack containing
all channels that should be analyzed and a 'segmentation' stack containing the planes informative
for segmentation (~seconds per image) using imctools. As a rule of thumb we recommend that all
channels with clear localized markers should be used for segmentation. The 'segmentation' stack is
then preprocessed using CellPro�ler and exported for Ilastik pixel classi�cation. For low-resolution
IMC images, as part of the preprocessing the images are scaled two fold. This allows an easier
classi�cation process as the images appear smoother. To make the classi�cation process more
scalable, the random sections of �xed size are cropped for classi�cation during the preprocessing
step (~minutes).

For pixel classi�cation the Ilastik software is used. The preprocessed and cropped segmentation
images are loaded and a selection of derived features, quantifying gradients and texture of channels
are calculated. For single cell segmentation of tissues, three classes are trained: nuclear pixels,
cytoplasmic/membrane pixels as well as background pixels. Based on the appearance of individual
marker channels, an expert user can interactively train the random forest based classi�er. We
suggest to do an iterative classi�cation, trying to minimize the estimated uncertainty of the pixel
classi�cation by visually inspecting the uncertainty maps. Depending on the heterogeneity of tissue
and the information content of the measured channels, this classi�cation can take several hours
for large datasets containing hundreds of heterogeneous images. The trained classi�er can then be
applied to the dataset in a batch mode (~seconds-minutes).

Using CellPro�ler the resulting probability maps are then segmented in two steps into a cell
mask, by �rst identifying the nuclear mask and then expanding it to the cellular mask (~seconds-
minutes)

The resulting mask can then be used to retrieve per-cell or object information from a stack
of channels using a CellPro�ler pipeline. To streamline the analysis with CellPro�ler, existing
CellPro�ler modules were modi�ed to allow an e�cient measurement of large image stacks. Addi-
tionally CellPro�ler can be used to extract the neighbourhood graph of the cells. (~minutes).

The single cell data can then be exported as standardized text �les that can be analysed using
custom scripts or specialized software such as HistoCAT [9].

The presented work�ow takes an accumulated processing time in the order of 5-10 minutes per
image. Except for the manual pixel classi�cation step, the processing of the pipeline can be fully
automatized and can be run in a parallelized fashion, scaling linearly with the number of images.
The manual pixel classi�cation step is the major bottleneck of the approach and the iterative
training can take hours. However this step uniquely allows the expert user to intuitively train a
classi�er to automatically integrate the complex and heterogeneous information contained in the
multichannel images into normalized images that are well suited for automatized analysis, e.g.
using a watershed based segmentation in CellPro�ler.

Being fully based on open source software, this scalable pipeline provides an easy extendable
basis for a semi-automatized, high throughput analysis of multiplexed tissue images, taking full
advantage of the multivariate nature of the data for image segmentation.
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4 Discussion

The presented work�ow allows for a high throughput semi-supervised image analysis of highly
multiplexed images. The development version of this work�ow has already been used for the
HistoCAT publication, where it was used to segment 49 IMC images and was shown to yield
biologically reasonable segmentation results [9]. Internally the approach was already used for
datasets with more than 800 images, showing the scalability of the approach.

While supervised pixel classi�cation provides an excellent framework to integrate complex image
pixel information into biological relevant classes, it has also several drawbacks. Needing manual
input, the classi�cation might have a signi�cant expert bias. This was quanti�ed as part of the
HistoCAT paper and the results showed no strong dependency of the analysis results based on
segmentations of di�erent users [9].

In particular low resolution imaging techniques such as IMC, which has an xy resolution of
1um and a routinely used cut thickness of 5 um, a pixel might contain parts of nuclear as well as
cytoplasmic regions. These overlaps are often not obvious from a single channel, but can e.g. seen
by looking at nuclear as well as cytoplasmic channels simultaneously. As a result the probability
map representation of the nuclear class is often smaller than one would judge by the nuclear signal
alone. While this has favorable properties for declumping of nuclei during the segmentation, nuclear
segmentation will thus often lead to nuclear masks that do not contain the complete nuclear signal.
We argue that this is mostly due to the physically overlapping of pixel classes and thus is rather a
problem of the low resolution used than this approach. We thus suggest that the analysis should
be mainly done on the expanded cell level.

Another issue speci�c to the low IMC image resolution is that it only allows subcellular reso-
lution by discriminating between nuclear and cytoplasmic/membrane pixels, but no separate dis-
tinction between cytoplasm and membrane. Correspondingly the separation between neighbouring
cells is notoriously di�cult. We partially address this problem by doing the pixel classi�cation at
a linear interpolated two fold upsampled resolution, which also makes the manual pixel classi�ca-
tion easier. When downsampling the segmentation objects two the original resolution we initially
remove pixels that would belong to two di�erent cells at two fold resolution, leaving an empty
border between neighbouring cells. Due to the lack of membrane speci�c membrane separation
between neighbouring cells we argue that these pixels would be just randomly assigned to one or
the other cells. Depending on the problem it might thus be reasonable to work with the mask
with a gap or close it using another expansion step. Once the quality and resolution of IMC
images improved we highly recommend to correspondingly acknowledge the membrane structures
speci�cally to alleviate these problems.

A natural limitation of training a pixel classi�er, is that the classi�er can not be easily trans-
ferred to new datasets, except if they have the same markers measured. However given that the
same markers used for classi�cation are measured, we observe a transferability of a classi�er from
one dataset to another. However we recommend to calculate the uncertainty maps of the predicted
images and screen for regions of high uncertainty, which should then be trained speci�cally. We
speculate that in the future, provided a variable enough training set and the use of a di�erent
classi�cation implementation, a classi�er trained on a single large dataset might be reused on new
datasets with only minor needs for retraining, making the pipeline even more automatized.

Being solely based on mature open source software, extending the pipeline is easy, mainly due
to the modular structure of CellPro�ler and Ilastik, which forms the core of the pipeline. Obvious
extensions of the approach is to combine it with tissue level segmentation masks. For example
Ilastik can be used to classify the tissue into stroma and tumor areas, similarly than used in the
AQUA approach [8]. Measuring the resulting probability masks with the cellular segmentation
masks with CellPro�ler allows to further integrate this level of information.

Being build on CellPro�ler, the output of this pipeline is segmentation masks and single cell
information in the standardized CellPro�ler output format. This forms a solid basis for more
complex analysis e.g. with the HistoCAT software for multiplexed image analysis or custom R and
python scripts, or to import the data in a standardized database.

4.1 Comparison to existing work�ows

Classically single cell segmentation is done by using a nuclear marker to identify the cell center and
then applying watershed or similar algorithms to identify the outline of a cell using a membrane
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marker [2]. Correspondingly recent publications of multiplexed imaging approaches perform a sim-
ple segmentation based on a nuclear and often another membrane channel, ignoring the additional
information encoded in the other acquired channels [6, 1]. A notable exception is the approach
suggested by Schue�er et al [11]. They identify multiple membrane channels in multiplexed images
based on the Spearman correlation with a bait, user de�ned membrane channel. Then they create
a new 'meta' membrane channel, calculating a weighted sum of the channels. The weighting of the
channels is optimized by optimizing an 'segmentation score', taking into account the overlap of the
masks with a user de�ned nuclear as well as membrane channel as well as the expected number
of cells. While taking information from more than one channel into account, this approach a)
largely depends on the validity of the segmentation score, b) a single, good bait membrane chan-
nel that is expressed in most of the cells of interest, c) focuses heavily on the membrane channel
identi�cation. d) does not incorporate signal gradient and texture features. Observing a better
scalability and visual performance, a real quantitative comparison of the approaches is challenging
and corresponding experiments are currently being performed. Conceptually we argue that the
supervised machine learning based approach is more �exible and makes better use of the segmen-
tation relevant information incorporated in the channels. Notably not only information about the
membrane but also about nuclear identity of the pixels is extracted from the masks. For example
in cases were the nuclear signal is very weak, the classi�er will still identify a nucleus based on the
absence of non-nuclear markers.

5 Conclusion

We present a modular, scalable and �exible segmentation pipeline particularly suited for highly
multiplexed images largely based on the combination of the CellPro�ler and Ilastik software. En-
abling an intuitive expert based classi�cation with the �exible machine learning algorithm, allows
to distill pixel class information using all the available channel data and results in standardized
probability maps. Altogether the presented work�ow allows a high throughput processing of hun-
dreds of multiplexed tissue images and thus forms a solid basis for a standardized, open source
data analysis.
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